1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
/* Copyright 2018-2019 Mozilla Foundation
 *
 * Licensed under the Apache License (Version 2.0), or the MIT license,
 * (the "Licenses") at your option. You may not use this file except in
 * compliance with one of the Licenses. You may obtain copies of the
 * Licenses at:
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *    http://opensource.org/licenses/MIT
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the Licenses is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the Licenses for the specific language governing permissions and
 * limitations under the Licenses. */

//! This module provides a [`Handle`] type, which you can think of something
//! like a dynamically checked, type erased reference/pointer type. Depending on
//! the usage pattern a handle can behave as either a borrowed reference, or an
//! owned pointer.
//!
//! They can be losslessly converted [to](Handle::into_u64) and
//! [from](Handle::from_u64) a 64 bit integer, for ease of passing over the FFI
//! (and they implement [`IntoFfi`] using these primitives for this purpose).
//!
//! The benefit is primarially that they can detect common misuse patterns that
//! would otherwise be silent bugs, such as use-after-free, double-free, passing
//! a wrongly-typed pointer to a function, etc.
//!
//! Handles are provided when inserting an item into either a [`HandleMap`] or a
//! [`ConcurrentHandleMap`].
//!
//! # Comparison to types from other crates
//!
//! [`HandleMap`] is similar to types offered by other crates, such as
//! `slotmap`, or `slab`. However, it has a number of key differences which make
//! it better for our purposes as compared to the types in those crates:
//!
//! 1. Unlike `slab` (but like `slotmap`), we implement versioning, detecting
//!    ABA problems, which allows us to detect use after free.
//! 2. Unlike `slotmap`, we don't have the `T: Copy` restriction.
//! 3. Unlike either, we can detect when you use a Key in a map that did not
//!    allocate the key. This is true even when the map is from a `.so` file
//!    compiled separately.
//! 3. Our implementation of doesn't use any `unsafe` (at the time of this
//!    writing).
//!
//! However, it comes with the following drawbacks:
//!
//! 1. `slotmap` holds its version information in a `u32`, and so it takes
//!    2<sup>31</sup> colliding insertions and deletions before it could
//!    potentially fail to detect an ABA issue, wheras we use a `u16`, and are
//!    limited to 2<sup>15</sup>.
//! 2. Similarly, we can only hold 2<sup>16</sup> items at once, unlike
//!    `slotmap`'s 2<sup>32</sup>. (Considering these items are typically things
//!    like database handles, this is probably plenty).
//! 3. Our implementation is slower, and uses slightly more memory than
//!    `slotmap` (which is in part due to the lack of `unsafe` mentioned above)
//!
//! The first two issues seem exceptionally unlikely, even for extremely
//! long-lived `HandleMap`, and we're still memory safe even if they occur (we
//! just might fail to notice a bug). The third issue also seems unimportant for
//! our use case.

use crate::error::{ErrorCode, ExternError};
use crate::into_ffi::IntoFfi;
use std::error::Error as StdError;
use std::fmt;
use std::ops;
use std::sync::atomic::{AtomicUsize, Ordering};
use std::sync::{Mutex, RwLock};

/// `HandleMap` is a collection type which can hold any type of value, and
/// offers a stable handle which can be used to retrieve it on insertion. These
/// handles offer methods for converting [to](Handle::into_u64) and
/// [from](Handle::from_u64) 64 bit integers, meaning they're very easy to pass
/// over the FFI (they also implement [`IntoFfi`] for the same purpose).
///
/// See the [module level docs](index.html) for more information.
///
/// Note: In FFI code, most usage of `HandleMap` will be done through the
/// [`ConcurrentHandleMap`] type, which is a thin wrapper around a
/// `RwLock<HandleMap<Mutex<T>>>`.
#[derive(Debug, Clone)]
pub struct HandleMap<T> {
    // The value of `map_id` in each `Handle`.
    id: u16,

    // Index to the start of the free list. Always points to a free item --
    // we never allow our free list to become empty.
    first_free: u16,

    // The number of entries with `data.is_some()`. This is never equal to
    // `entries.len()`, we always grow before that point to ensure we always have
    // a valid `first_free` index to add entries onto. This is our `len`.
    num_entries: usize,

    // The actual data. Note: entries.len() is our 'capacity'.
    entries: Vec<Entry<T>>,
}

#[derive(Debug, Clone)]
struct Entry<T> {
    // initially 1, incremented on insertion and removal. Thus,
    // if version is even, state should always be EntryState::Active.
    version: u16,
    state: EntryState<T>,
}

#[derive(Debug, Clone)]
enum EntryState<T> {
    // Not part of the free list
    Active(T),
    // The u16 is the next index in the free list.
    InFreeList(u16),
    // Part of the free list, but the sentinel.
    EndOfFreeList,
}

impl<T> EntryState<T> {
    #[cfg(any(debug_assertions, test))]
    fn is_end_of_list(&self) -> bool {
        matches!(self, EntryState::EndOfFreeList)
    }

    #[inline]
    fn is_occupied(&self) -> bool {
        self.get_item().is_some()
    }

    #[inline]
    fn get_item(&self) -> Option<&T> {
        match self {
            EntryState::Active(v) => Some(v),
            _ => None,
        }
    }

    #[inline]
    fn get_item_mut(&mut self) -> Option<&mut T> {
        match self {
            EntryState::Active(v) => Some(v),
            _ => None,
        }
    }
}

// Small helper to check our casts.
#[inline]
fn to_u16(v: usize) -> u16 {
    use std::u16::MAX as U16_MAX;
    // Shouldn't ever happen.
    assert!(v <= (U16_MAX as usize), "Bug: Doesn't fit in u16: {}", v);
    v as u16
}

/// The maximum capacity of a [`HandleMap`]. Attempting to instantiate one with
/// a larger capacity will cause a panic.
///
/// Note: This could go as high as `(1 << 16) - 2`, but doing is seems more
/// error prone. For the sake of paranoia, we limit it to this size, which is
/// already quite a bit larger than it seems like we're likely to ever need.
pub const MAX_CAPACITY: usize = (1 << 15) - 1;

// Never having to worry about capacity == 0 simplifies the code at the cost of
// worse memory usage. It doesn't seem like there's any reason to make this
// public.
const MIN_CAPACITY: usize = 4;

/// An error representing the ways a `Handle` may be invalid.
#[derive(Debug, Clone, PartialEq, Eq, PartialOrd, Ord)]
pub enum HandleError {
    /// Identical to invalid handle, but has a slightly more helpful
    /// message for the most common case 0.
    NullHandle,

    /// Returned from [`Handle::from_u64`] if [`Handle::is_valid`] fails.
    InvalidHandle,

    /// Returned from get/get_mut/delete if the handle is stale (this indicates
    /// something equivalent to a use-after-free / double-free, etc).
    StaleVersion,

    /// Returned if the handle index references an index past the end of the
    /// HandleMap.
    IndexPastEnd,

    /// The handle has a map_id for a different map than the one it was
    /// attempted to be used with.
    WrongMap,
}

impl StdError for HandleError {}

impl fmt::Display for HandleError {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        use HandleError::*;
        match self {
            NullHandle => {
                f.write_str("Tried to use a null handle (this object has probably been closed)")
            }
            InvalidHandle => f.write_str("u64 could not encode a valid Handle"),
            StaleVersion => f.write_str("Handle has stale version number"),
            IndexPastEnd => f.write_str("Handle references a index past the end of this HandleMap"),
            WrongMap => f.write_str("Handle is from a different map"),
        }
    }
}

impl From<HandleError> for ExternError {
    fn from(e: HandleError) -> Self {
        ExternError::new_error(ErrorCode::INVALID_HANDLE, e.to_string())
    }
}

impl<T> HandleMap<T> {
    /// Create a new `HandleMap` with the default capacity.
    pub fn new() -> Self {
        Self::new_with_capacity(MIN_CAPACITY)
    }

    /// Allocate a new `HandleMap`. Note that the actual capacity may be larger
    /// than the requested value.
    ///
    /// Panics if `request` is greater than [`handle_map::MAX_CAPACITY`](MAX_CAPACITY)
    pub fn new_with_capacity(request: usize) -> Self {
        assert!(
            request <= MAX_CAPACITY,
            "HandleMap capacity is limited to {} (request was {})",
            MAX_CAPACITY,
            request
        );

        let capacity = request.max(MIN_CAPACITY);
        let id = next_handle_map_id();
        let mut entries = Vec::with_capacity(capacity);

        // Initialize each entry with version 1, and as a member of the free list
        for i in 0..(capacity - 1) {
            entries.push(Entry {
                version: 1,
                state: EntryState::InFreeList(to_u16(i + 1)),
            });
        }

        // And the final entry is at the end of the free list
        // (but still has version 1).
        entries.push(Entry {
            version: 1,
            state: EntryState::EndOfFreeList,
        });
        Self {
            id,
            first_free: 0,
            num_entries: 0,
            entries,
        }
    }

    /// Get the number of entries in the `HandleMap`.
    #[inline]
    pub fn len(&self) -> usize {
        self.num_entries
    }

    /// Returns true if the HandleMap is empty.
    #[inline]
    pub fn is_empty(&self) -> bool {
        self.len() == 0
    }

    /// Returns the number of slots allocated in the handle map.
    #[inline]
    pub fn capacity(&self) -> usize {
        // It's not a bug that this isn't entries.capacity() -- We're returning
        // how many slots exist, not something about the backing memory allocation
        self.entries.len()
    }

    fn ensure_capacity(&mut self, cap_at_least: usize) {
        assert_ne!(self.len(), self.capacity(), "Bug: should have grown by now");
        assert!(cap_at_least <= MAX_CAPACITY, "HandleMap overfilled");
        if self.capacity() > cap_at_least {
            return;
        }

        let mut next_cap = self.capacity();
        while next_cap <= cap_at_least {
            next_cap *= 2;
        }
        next_cap = next_cap.min(MAX_CAPACITY);

        let need_extra = next_cap.saturating_sub(self.entries.capacity());
        self.entries.reserve(need_extra);

        assert!(
            !self.entries[self.first_free as usize].state.is_occupied(),
            "Bug: HandleMap.first_free points at occupied index"
        );

        // Insert new entries at the front of our list.
        while self.entries.len() < next_cap - 1 {
            // This is a little wasteful but whatever. Add each new entry to the
            // front of the free list one at a time.
            self.entries.push(Entry {
                version: 1,
                state: EntryState::InFreeList(self.first_free),
            });
            self.first_free = to_u16(self.entries.len() - 1);
        }

        self.debug_check_valid();
    }

    #[inline]
    fn debug_check_valid(&self) {
        // Run the expensive validity check in tests and in debug builds.
        #[cfg(any(debug_assertions, test))]
        {
            self.assert_valid();
        }
    }

    #[cfg(any(debug_assertions, test))]
    fn assert_valid(&self) {
        assert_ne!(self.len(), self.capacity());
        assert!(self.capacity() <= MAX_CAPACITY, "Entries too large");
        // Validate that our free list is correct.

        let number_of_ends = self
            .entries
            .iter()
            .filter(|e| e.state.is_end_of_list())
            .count();
        assert_eq!(
            number_of_ends, 1,
            "More than one entry think's it's the end of the list, or no entries do"
        );

        // Check that the free list hits every unoccupied item.
        // The tuple is: `(should_be_in_free_list, is_in_free_list)`.
        let mut free_indices = vec![(false, false); self.capacity()];
        for (i, e) in self.entries.iter().enumerate() {
            if !e.state.is_occupied() {
                free_indices[i].0 = true;
            }
        }

        let mut next = self.first_free;
        loop {
            let ni = next as usize;

            assert!(
                ni <= free_indices.len(),
                "Free list contains out of bounds index!"
            );

            assert!(
                free_indices[ni].0,
                "Free list has an index that shouldn't be free! {}",
                ni
            );

            assert!(
                !free_indices[ni].1,
                "Free list hit an index ({}) more than once! Cycle detected!",
                ni
            );

            free_indices[ni].1 = true;

            match &self.entries[ni].state {
                EntryState::InFreeList(next_index) => next = *next_index,
                EntryState::EndOfFreeList => break,
                // Hitting `Active` here is probably not possible because of the checks above, but who knows.
                EntryState::Active(..) => unreachable!("Bug: Active item in free list at {}", next),
            }
        }
        let mut occupied_count = 0;
        for (i, &(should_be_free, is_free)) in free_indices.iter().enumerate() {
            assert_eq!(
                should_be_free, is_free,
                "Free list missed item, or contains an item it shouldn't: {}",
                i
            );
            if !should_be_free {
                occupied_count += 1;
            }
        }
        assert_eq!(
            self.num_entries, occupied_count,
            "num_entries doesn't reflect the actual number of entries"
        );
    }

    /// Insert an item into the map, and return a handle to it.
    pub fn insert(&mut self, v: T) -> Handle {
        let need_cap = self.len() + 1;
        self.ensure_capacity(need_cap);
        let index = self.first_free;
        let result = {
            // Scoped mutable borrow of entry.
            let entry = &mut self.entries[index as usize];
            let new_first_free = match entry.state {
                EntryState::InFreeList(i) => i,
                _ => panic!("Bug: next_index pointed at non-free list entry (or end of list)"),
            };
            entry.version += 1;
            if entry.version == 0 {
                entry.version += 2;
            }
            entry.state = EntryState::Active(v);
            self.first_free = new_first_free;
            self.num_entries += 1;

            Handle {
                map_id: self.id,
                version: entry.version,
                index,
            }
        };
        self.debug_check_valid();
        result
    }

    // Helper to contain the handle validation boilerplate. Returns `h.index as usize`.
    fn check_handle(&self, h: Handle) -> Result<usize, HandleError> {
        if h.map_id != self.id {
            log::info!(
                "HandleMap access with handle having wrong map id: {:?} (our map id is {})",
                h,
                self.id
            );
            return Err(HandleError::WrongMap);
        }
        let index = h.index as usize;
        if index >= self.entries.len() {
            log::info!("HandleMap accessed with handle past end of map: {:?}", h);
            return Err(HandleError::IndexPastEnd);
        }
        if self.entries[index].version != h.version {
            log::info!(
                "HandleMap accessed with handle with wrong version {:?} (entry version is {})",
                h,
                self.entries[index].version
            );
            return Err(HandleError::StaleVersion);
        }
        // At this point, we know the handle version matches the entry version,
        // but if someone created a specially invalid handle, they could have
        // its version match the version they expect an unoccupied index to
        // have.
        //
        // We don't use any unsafe, so the worse thing that can happen here is
        // that we get confused and panic, but still that's not great, so we
        // check for this explicitly.
        //
        // Note that `active` versions are always even, as they start at 1, and
        // are incremented on both insertion and deletion.
        //
        // Anyway, this is just for sanity checking, we already check this in
        // practice when we convert `u64`s into `Handle`s, which is the only
        // way we ever use these in the real world.
        if (h.version % 2) != 0 {
            log::info!(
                "HandleMap given handle with matching but illegal version: {:?}",
                h,
            );
            return Err(HandleError::StaleVersion);
        }
        Ok(index)
    }

    /// Delete an item from the HandleMap.
    pub fn delete(&mut self, h: Handle) -> Result<(), HandleError> {
        self.remove(h).map(drop)
    }

    /// Remove an item from the HandleMap, returning the old value.
    pub fn remove(&mut self, h: Handle) -> Result<T, HandleError> {
        let index = self.check_handle(h)?;
        let prev = {
            // Scoped mutable borrow of entry.
            let entry = &mut self.entries[index];
            entry.version += 1;
            let index = h.index;
            let last_state =
                std::mem::replace(&mut entry.state, EntryState::InFreeList(self.first_free));
            self.num_entries -= 1;
            self.first_free = index;

            if let EntryState::Active(value) = last_state {
                value
            } else {
                // This indicates either a bug in HandleMap or memory
                // corruption. Abandon all hope.
                unreachable!(
                    "Handle {:?} passed validation but references unoccupied entry",
                    h
                );
            }
        };
        self.debug_check_valid();
        Ok(prev)
    }

    /// Get a reference to the item referenced by the handle, or return a
    /// [`HandleError`] describing the problem.
    pub fn get(&self, h: Handle) -> Result<&T, HandleError> {
        let idx = self.check_handle(h)?;
        let entry = &self.entries[idx];
        // This should be caught by check_handle above, but we avoid panicking
        // because we'd rather not poison any locks we don't have to poison
        let item = entry
            .state
            .get_item()
            .ok_or_else(|| HandleError::InvalidHandle)?;
        Ok(item)
    }

    /// Get a mut reference to the item referenced by the handle, or return a
    /// [`HandleError`] describing the problem.
    pub fn get_mut(&mut self, h: Handle) -> Result<&mut T, HandleError> {
        let idx = self.check_handle(h)?;
        let entry = &mut self.entries[idx];
        // This should be caught by check_handle above, but we avoid panicking
        // because we'd rather not poison any locks we don't have to poison
        let item = entry
            .state
            .get_item_mut()
            .ok_or_else(|| HandleError::InvalidHandle)?;
        Ok(item)
    }
}

impl<T> Default for HandleMap<T> {
    #[inline]
    fn default() -> Self {
        HandleMap::new()
    }
}

impl<T> ops::Index<Handle> for HandleMap<T> {
    type Output = T;
    #[inline]
    fn index(&self, h: Handle) -> &T {
        self.get(h)
            .expect("Indexed into HandleMap with invalid handle!")
    }
}

// We don't implement IndexMut intentionally (implementing ops::Index is
// dubious enough)

/// A Handle we allow to be returned over the FFI by implementing [`IntoFfi`].
/// This type is intentionally not `#[repr(C)]`, and getting the data out of the
/// FFI is done using `Handle::from_u64`, or it's implemetation of `From<u64>`.
///
/// It consists of, at a minimum:
///
/// - A "map id" (used to ensure you're using it with the correct map)
/// - a "version" (incremented when the value in the index changes, used to
///   detect multiple frees, use after free, and ABA and ABA)
/// - and a field indicating which index it goes into.
///
/// In practice, it may also contain extra information to help detect other
/// errors (currently it stores a "magic value" used to detect invalid
/// [`Handle`]s).
///
/// These fields may change but the following guarantees are made about the
/// internal representation:
///
/// - This will always be representable in 64 bits.
/// - The bits, when interpreted as a signed 64 bit integer, will be positive
///   (that is to say, it will *actually* be representable in 63 bits, since
///   this makes the most significant bit unavailable for the purposes of
///   encoding). This guarantee makes things slightly less dubious when passing
///   things to Java, gives us some extra validation ability, etc.
#[derive(Copy, Clone, Debug, PartialEq)]
pub struct Handle {
    map_id: u16,
    version: u16,
    index: u16,
}

// We stuff this into the top 16 bits of the handle when u16 encoded to detect
// various sorts of weirdness. It's the letters 'A' and 'S' as ASCII, but the
// only important thing about it is that the most significant bit be unset.
const HANDLE_MAGIC: u16 = 0x4153_u16;

impl Handle {
    /// Convert a `Handle` to a `u64`. You can also use `Into::into` directly.
    /// Most uses of this will be automatic due to our [`IntoFfi`] implementation.
    #[inline]
    pub fn into_u64(self) -> u64 {
        let map_id = u64::from(self.map_id);
        let version = u64::from(self.version);
        let index = u64::from(self.index);
        // SOMEDAY: we could also use this as a sort of CRC if we were really paranoid.
        // e.g. `magic = combine_to_u16(map_id, version, index)`.
        let magic = u64::from(HANDLE_MAGIC);
        (magic << 48) | (map_id << 32) | (index << 16) | version
    }

    /// Convert a `u64` to a `Handle`. Inverse of `into_u64`. We also implement
    /// `From::from` (which will panic instead of returning Err).
    ///
    /// Returns [`HandleError::InvalidHandle`](HandleError) if the bits cannot
    /// possibly represent a valid handle.
    pub fn from_u64(v: u64) -> Result<Self, HandleError> {
        if !Handle::is_valid(v) {
            log::warn!("Illegal handle! {:x}", v);
            if v == 0 {
                Err(HandleError::NullHandle)
            } else {
                Err(HandleError::InvalidHandle)
            }
        } else {
            let map_id = (v >> 32) as u16;
            let index = (v >> 16) as u16;
            let version = v as u16;
            Ok(Self {
                map_id,
                version,
                index,
            })
        }
    }

    /// Returns whether or not `v` makes a bit pattern that could represent an
    /// encoded [`Handle`].
    #[inline]
    pub fn is_valid(v: u64) -> bool {
        (v >> 48) == u64::from(HANDLE_MAGIC) &&
        // The "bottom" field is the version. We increment it both when
        // inserting and removing, and they're all initially 1. So, all valid
        // handles that we returned should have an even version.
        ((v & 1) == 0)
    }
}

impl From<u64> for Handle {
    fn from(u: u64) -> Self {
        Handle::from_u64(u).expect("Illegal handle!")
    }
}

impl From<Handle> for u64 {
    #[inline]
    fn from(h: Handle) -> u64 {
        h.into_u64()
    }
}

unsafe impl IntoFfi for Handle {
    type Value = u64;
    // Note: intentionally does not encode a valid handle for any map.
    #[inline]
    fn ffi_default() -> u64 {
        0u64
    }
    #[inline]
    fn into_ffi_value(self) -> u64 {
        self.into_u64()
    }
}

/// `ConcurrentHandleMap` is a relatively thin wrapper around
/// `RwLock<HandleMap<Mutex<T>>>`. Due to the nested locking, it's not possible
/// to implement the same API as [`HandleMap`], however it does implement an API
/// that offers equivalent functionality, as well as several functions that
/// greatly simplify FFI usage (see example below).
///
/// See the [module level documentation](index.html) for more info.
///
/// # Example
///
/// ```rust,no_run
/// # #[macro_use] extern crate lazy_static;
/// # extern crate ffi_support;
/// # use ffi_support::*;
/// # use std::sync::*;
///
/// // Somewhere...
/// struct Thing { value: f64 }
///
/// lazy_static! {
///     static ref ITEMS: ConcurrentHandleMap<Thing> = ConcurrentHandleMap::new();
/// }
///
/// #[no_mangle]
/// pub extern "C" fn mylib_new_thing(value: f64, err: &mut ExternError) -> u64 {
///     // Most uses will be `ITEMS.insert_with_result`. Note that this already
///     // calls `call_with_output` (or `call_with_result` if this were
///     // `insert_with_result`) for you.
///     ITEMS.insert_with_output(err, || Thing { value })
/// }
///
/// #[no_mangle]
/// pub extern "C" fn mylib_thing_value(h: u64, err: &mut ExternError) -> f64 {
///     // Or `ITEMS.call_with_result` for the fallible functions.
///     ITEMS.call_with_output(err, h, |thing| thing.value)
/// }
///
/// #[no_mangle]
/// pub extern "C" fn mylib_thing_set_value(h: u64, new_value: f64, err: &mut ExternError) {
///     ITEMS.call_with_output_mut(err, h, |thing| {
///         thing.value = new_value;
///     })
/// }
///
/// // Note: defines the following function:
/// // pub extern "C" fn mylib_destroy_thing(h: u64, err: &mut ExternError)
/// define_handle_map_deleter!(ITEMS, mylib_destroy_thing);
/// ```
pub struct ConcurrentHandleMap<T> {
    /// The underlying map. Public so that more advanced use-cases
    /// may use it as they please.
    pub map: RwLock<HandleMap<Mutex<T>>>,
}

impl<T> ConcurrentHandleMap<T> {
    /// Construct a new `ConcurrentHandleMap`.
    pub fn new() -> Self {
        Self {
            map: RwLock::new(HandleMap::new()),
        }
    }

    /// Get the number of entries in the `ConcurrentHandleMap`.
    ///
    /// This takes the map's `read` lock.
    #[inline]
    pub fn len(&self) -> usize {
        let map = self.map.read().unwrap();
        map.len()
    }

    /// Returns true if the `ConcurrentHandleMap` is empty.
    ///
    /// This takes the map's `read` lock.
    #[inline]
    pub fn is_empty(&self) -> bool {
        self.len() == 0
    }

    /// Insert an item into the map, returning the newly allocated handle to the
    /// item.
    ///
    /// # Locking
    ///
    /// Note that this requires taking the map's write lock, and so it will
    /// block until all other threads have finished any read/write operations.
    pub fn insert(&self, v: T) -> Handle {
        // Fails if the lock is poisoned. Not clear what we should do here... We
        // could always insert anyway (by matching on LockResult), but that
        // seems... really quite dubious.
        let mut map = self.map.write().unwrap();
        map.insert(Mutex::new(v))
    }

    /// Remove an item from the map.
    ///
    /// # Locking
    ///
    /// Note that this requires taking the map's write lock, and so it will
    /// block until all other threads have finished any read/write operations.
    pub fn delete(&self, h: Handle) -> Result<(), HandleError> {
        // We use `remove` and not delete (and use the inner block) to ensure
        // that if `v`'s destructor panics, we aren't holding the write lock
        // when it happens, so that the map itself doesn't get poisoned.
        let v = {
            let mut map = self.map.write().unwrap();
            map.remove(h)
        };
        v.map(drop)
    }

    /// Convenient wrapper for `delete` which takes a `u64` that it will
    /// convert to a handle.
    ///
    /// The main benefit (besides convenience) of this over the version
    /// that takes a [`Handle`] is that it allows handling handle-related errors
    /// in one place.
    pub fn delete_u64(&self, h: u64) -> Result<(), HandleError> {
        self.delete(Handle::from_u64(h)?)
    }

    /// Remove an item from the map, returning either the item,
    /// or None if its guard mutex got poisoned at some point.
    ///
    /// # Locking
    ///
    /// Note that this requires taking the map's write lock, and so it will
    /// block until all other threads have finished any read/write operations.
    pub fn remove(&self, h: Handle) -> Result<Option<T>, HandleError> {
        let mut map = self.map.write().unwrap();
        let mutex = map.remove(h)?;
        Ok(mutex.into_inner().ok())
    }

    /// Convenient wrapper for `remove` which takes a `u64` that it will
    /// convert to a handle.
    ///
    /// The main benefit (besides convenience) of this over the version
    /// that takes a [`Handle`] is that it allows handling handle-related errors
    /// in one place.
    pub fn remove_u64(&self, h: u64) -> Result<Option<T>, HandleError> {
        self.remove(Handle::from_u64(h)?)
    }

    /// Call `callback` with a non-mutable reference to the item from the map,
    /// after acquiring the necessary locks.
    ///
    /// # Locking
    ///
    /// Note that this requires taking both:
    ///
    /// - The map's read lock, and so it will block until all other threads have
    ///   finished any write operations.
    /// - The mutex on the slot the handle is mapped to.
    ///
    /// And so it will block if there are ongoing write operations, or if
    /// another thread is reading from the same handle.
    ///
    /// # Panics
    ///
    /// This will panic if a previous `get()` or `get_mut()` call has panicked
    /// inside it's callback. The solution to this
    ///
    /// (It may also panic if the handle map detects internal state corruption,
    /// however this should not happen except for bugs in the handle map code).
    pub fn get<F, E, R>(&self, h: Handle, callback: F) -> Result<R, E>
    where
        F: FnOnce(&T) -> Result<R, E>,
        E: From<HandleError>,
    {
        self.get_mut(h, |v| callback(v))
    }

    /// Call `callback` with a mutable reference to the item from the map, after
    /// acquiring the necessary locks.
    ///
    /// # Locking
    ///
    /// Note that this requires taking both:
    ///
    /// - The map's read lock, and so it will block until all other threads have
    ///   finished any write operations.
    /// - The mutex on the slot the handle is mapped to.
    ///
    /// And so it will block if there are ongoing write operations, or if
    /// another thread is reading from the same handle.
    ///
    /// # Panics
    ///
    /// This will panic if a previous `get()` or `get_mut()` call has panicked
    /// inside it's callback. The only solution to this is to remove and reinsert
    /// said item.
    ///
    /// (It may also panic if the handle map detects internal state corruption,
    /// however this should not happen except for bugs in the handle map code).
    pub fn get_mut<F, E, R>(&self, h: Handle, callback: F) -> Result<R, E>
    where
        F: FnOnce(&mut T) -> Result<R, E>,
        E: From<HandleError>,
    {
        // XXX figure out how to handle poison...
        let map = self.map.read().unwrap();
        let mtx = map.get(h)?;
        let mut hm = mtx.lock().unwrap();
        callback(&mut *hm)
    }

    /// Convenient wrapper for `get` which takes a `u64` that it will convert to
    /// a handle.
    ///
    /// The other benefit (besides convenience) of this over the version
    /// that takes a [`Handle`] is that it allows handling handle-related errors
    /// in one place.
    ///
    /// # Locking
    ///
    /// Note that this requires taking both:
    ///
    /// - The map's read lock, and so it will block until all other threads have
    ///   finished any write operations.
    /// - The mutex on the slot the handle is mapped to.
    ///
    /// And so it will block if there are ongoing write operations, or if
    /// another thread is reading from the same handle.
    pub fn get_u64<F, E, R>(&self, u: u64, callback: F) -> Result<R, E>
    where
        F: FnOnce(&T) -> Result<R, E>,
        E: From<HandleError>,
    {
        self.get(Handle::from_u64(u)?, callback)
    }

    /// Convenient wrapper for `get_mut` which takes a `u64` that it will
    /// convert to a handle.
    ///
    /// The main benefit (besides convenience) of this over the version
    /// that takes a [`Handle`] is that it allows handling handle-related errors
    /// in one place.
    ///
    /// # Locking
    ///
    /// Note that this requires taking both:
    ///
    /// - The map's read lock, and so it will block until all other threads have
    ///   finished any write operations.
    /// - The mutex on the slot the handle is mapped to.
    ///
    /// And so it will block if there are ongoing write operations, or if
    /// another thread is reading from the same handle.
    pub fn get_mut_u64<F, E, R>(&self, u: u64, callback: F) -> Result<R, E>
    where
        F: FnOnce(&mut T) -> Result<R, E>,
        E: From<HandleError>,
    {
        self.get_mut(Handle::from_u64(u)?, callback)
    }

    /// Helper that performs both a [`call_with_result`] and [`get`](ConcurrentHandleMap::get_mut).
    pub fn call_with_result_mut<R, E, F>(
        &self,
        out_error: &mut ExternError,
        h: u64,
        callback: F,
    ) -> R::Value
    where
        F: std::panic::UnwindSafe + FnOnce(&mut T) -> Result<R, E>,
        ExternError: From<E>,
        R: IntoFfi,
    {
        use crate::call_with_result;
        call_with_result(out_error, || -> Result<_, ExternError> {
            // We can't reuse get_mut here because it would require E:
            // From<HandleError>, which is inconvenient...
            let h = Handle::from_u64(h)?;
            let map = self.map.read().unwrap();
            let mtx = map.get(h)?;
            let mut hm = mtx.lock().unwrap();
            Ok(callback(&mut *hm)?)
        })
    }

    /// Helper that performs both a [`call_with_result`] and [`get`](ConcurrentHandleMap::get).
    pub fn call_with_result<R, E, F>(
        &self,
        out_error: &mut ExternError,
        h: u64,
        callback: F,
    ) -> R::Value
    where
        F: std::panic::UnwindSafe + FnOnce(&T) -> Result<R, E>,
        ExternError: From<E>,
        R: IntoFfi,
    {
        self.call_with_result_mut(out_error, h, |r| callback(r))
    }

    /// Helper that performs both a [`call_with_output`] and [`get`](ConcurrentHandleMap::get).
    pub fn call_with_output<R, F>(
        &self,
        out_error: &mut ExternError,
        h: u64,
        callback: F,
    ) -> R::Value
    where
        F: std::panic::UnwindSafe + FnOnce(&T) -> R,
        R: IntoFfi,
    {
        self.call_with_result(out_error, h, |r| -> Result<_, HandleError> {
            Ok(callback(r))
        })
    }

    /// Helper that performs both a [`call_with_output`] and [`get_mut`](ConcurrentHandleMap::get).
    pub fn call_with_output_mut<R, F>(
        &self,
        out_error: &mut ExternError,
        h: u64,
        callback: F,
    ) -> R::Value
    where
        F: std::panic::UnwindSafe + FnOnce(&mut T) -> R,
        R: IntoFfi,
    {
        self.call_with_result_mut(out_error, h, |r| -> Result<_, HandleError> {
            Ok(callback(r))
        })
    }

    /// Use `constructor` to create and insert a `T`, while inside a
    /// [`call_with_result`] call (to handle panics and map errors onto an
    /// `ExternError`).
    pub fn insert_with_result<E, F>(&self, out_error: &mut ExternError, constructor: F) -> u64
    where
        F: std::panic::UnwindSafe + FnOnce() -> Result<T, E>,
        ExternError: From<E>,
    {
        use crate::call_with_result;
        call_with_result(out_error, || -> Result<_, ExternError> {
            // Note: it's important that we don't call the constructor while
            // we're holding the write lock, because we don't want to poison
            // the entire map if it panics!
            let to_insert = constructor()?;
            Ok(self.insert(to_insert))
        })
    }

    /// Equivalent to
    /// [`insert_with_result`](ConcurrentHandleMap::insert_with_result) for the
    /// case where the constructor cannot produce an error.
    ///
    /// The name is somewhat dubious, since there's no `output`, but it's intended to make it
    /// clear that it contains a [`call_with_output`] internally.
    pub fn insert_with_output<F>(&self, out_error: &mut ExternError, constructor: F) -> u64
    where
        F: std::panic::UnwindSafe + FnOnce() -> T,
    {
        // The Err type isn't important here beyond being convertable to ExternError
        self.insert_with_result(out_error, || -> Result<_, HandleError> {
            Ok(constructor())
        })
    }
}

impl<T> Default for ConcurrentHandleMap<T> {
    #[inline]
    fn default() -> Self {
        Self::new()
    }
}

// Returns the next map_id.
fn next_handle_map_id() -> u16 {
    let id = HANDLE_MAP_ID_COUNTER
        .fetch_add(1, Ordering::SeqCst)
        .wrapping_add(1);
    id as u16
}

// Note: These IDs are only used to detect using a key against the wrong HandleMap.
// We ensure they're randomly initialized, to prevent using them across separately
// compiled .so files.
lazy_static::lazy_static! {
    // This should be `AtomicU16`, but those aren't stablilized yet.
    // Instead, we just cast to u16 on read.
    static ref HANDLE_MAP_ID_COUNTER: AtomicUsize = {
        // Abuse HashMap's RandomState to get a strong RNG without bringing in
        // the `rand` crate (OTOH maybe we should just bring in the rand crate?)
        use std::collections::hash_map::RandomState;
        use std::hash::{BuildHasher, Hasher};
        let init = RandomState::new().build_hasher().finish() as usize;
        AtomicUsize::new(init)
    };
}

#[cfg(test)]
mod test {
    use super::*;

    #[derive(PartialEq, Debug)]
    pub(super) struct Foobar(usize);

    #[test]
    fn test_invalid_handle() {
        assert_eq!(Handle::from_u64(0), Err(HandleError::NullHandle));
        // Valid except `version` is odd
        assert_eq!(
            Handle::from_u64((u64::from(HANDLE_MAGIC) << 48) | 0x1234_0012_0001),
            Err(HandleError::InvalidHandle)
        );

        assert_eq!(
            Handle::from_u64((u64::from(HANDLE_MAGIC) << 48) | 0x1234_0012_0002),
            Ok(Handle {
                version: 0x0002,
                index: 0x0012,
                map_id: 0x1234,
            })
        );
    }

    #[test]
    fn test_correct_value_single() {
        let mut map = HandleMap::new();
        let handle = map.insert(Foobar(1234));
        assert_eq!(map.get(handle).unwrap(), &Foobar(1234));
        map.delete(handle).unwrap();
        assert_eq!(map.get(handle), Err(HandleError::StaleVersion));
    }

    #[test]
    fn test_correct_value_multiple() {
        let mut map = HandleMap::new();
        let handle1 = map.insert(Foobar(1234));
        let handle2 = map.insert(Foobar(4321));
        assert_eq!(map.get(handle1).unwrap(), &Foobar(1234));
        assert_eq!(map.get(handle2).unwrap(), &Foobar(4321));
        map.delete(handle1).unwrap();
        assert_eq!(map.get(handle1), Err(HandleError::StaleVersion));
        assert_eq!(map.get(handle2).unwrap(), &Foobar(4321));
    }

    #[test]
    fn test_wrong_map() {
        let mut map1 = HandleMap::new();
        let mut map2 = HandleMap::new();

        let handle1 = map1.insert(Foobar(1234));
        let handle2 = map2.insert(Foobar(1234));

        assert_eq!(map1.get(handle1).unwrap(), &Foobar(1234));
        assert_eq!(map2.get(handle2).unwrap(), &Foobar(1234));

        assert_eq!(map1.get(handle2), Err(HandleError::WrongMap));
        assert_eq!(map2.get(handle1), Err(HandleError::WrongMap));
    }

    #[test]
    fn test_bad_index() {
        let map: HandleMap<Foobar> = HandleMap::new();
        assert_eq!(
            map.get(Handle {
                map_id: map.id,
                version: 2,
                index: 100
            }),
            Err(HandleError::IndexPastEnd)
        );
    }

    #[test]
    fn test_resizing() {
        let mut map = HandleMap::new();
        let mut handles = vec![];
        for i in 0..1000 {
            handles.push(map.insert(Foobar(i)))
        }
        for (i, &h) in handles.iter().enumerate() {
            assert_eq!(map.get(h).unwrap(), &Foobar(i));
            assert_eq!(map.remove(h).unwrap(), Foobar(i));
        }
        let mut handles2 = vec![];
        for i in 1000..2000 {
            // Not really related to this test, but it's convenient to check this here.
            let h = map.insert(Foobar(i));
            let hu = h.into_u64();
            assert_eq!(Handle::from_u64(hu).unwrap(), h);
            handles2.push(hu);
        }

        for (i, (&h0, h1u)) in handles.iter().zip(handles2).enumerate() {
            // It's still a stale version, even though the slot is occupied again.
            assert_eq!(map.get(h0), Err(HandleError::StaleVersion));
            let h1 = Handle::from_u64(h1u).unwrap();
            assert_eq!(map.get(h1).unwrap(), &Foobar(i + 1000));
        }
    }

    /// Tests that check our behavior when panicing.
    ///
    /// Naturally these require panic=unwind, which means we can't run them when
    /// generating coverage (well, `-Zprofile`-based coverage can't -- although
    /// ptrace-based coverage like tarpaulin can), and so we turn them off.
    ///
    /// (For clarity, `cfg(coverage)` is not a standard thing. We add it in
    /// `automation/emit_coverage_info.sh`, and you can force it by adding
    /// "--cfg coverage" to your RUSTFLAGS manually if you need to do so).
    #[cfg(not(coverage))]
    mod panic_tests {
        use super::*;

        struct PanicOnDrop(());
        impl Drop for PanicOnDrop {
            fn drop(&mut self) {
                panic!("intentional panic (drop)");
            }
        }

        #[test]
        fn test_panicking_drop() {
            let map = ConcurrentHandleMap::new();
            let h = map.insert(PanicOnDrop(())).into_u64();
            let mut e = ExternError::success();
            crate::call_with_result(&mut e, || map.delete_u64(h));
            assert_eq!(e.get_code(), crate::ErrorCode::PANIC);
            let _ = unsafe { e.get_and_consume_message() };
            assert!(!map.map.is_poisoned());
            let inner = map.map.read().unwrap();
            inner.assert_valid();
            assert_eq!(inner.len(), 0);
        }

        #[test]
        fn test_panicking_call_with() {
            let map = ConcurrentHandleMap::new();
            let h = map.insert(Foobar(0)).into_u64();
            let mut e = ExternError::success();
            map.call_with_output(&mut e, h, |_thing| {
                panic!("intentional panic (call_with_output)");
            });

            assert_eq!(e.get_code(), crate::ErrorCode::PANIC);
            let _ = unsafe { e.get_and_consume_message() };

            {
                assert!(!map.map.is_poisoned());
                let inner = map.map.read().unwrap();
                inner.assert_valid();
                assert_eq!(inner.len(), 1);
                let mut seen = false;
                for e in &inner.entries {
                    if let EntryState::Active(v) = &e.state {
                        assert!(!seen);
                        assert!(v.is_poisoned());
                        seen = true;
                    }
                }
            }
            assert!(map.delete_u64(h).is_ok());
            assert!(!map.map.is_poisoned());
            let inner = map.map.read().unwrap();
            inner.assert_valid();
            assert_eq!(inner.len(), 0);
        }

        #[test]
        fn test_panicking_insert_with() {
            let map = ConcurrentHandleMap::new();
            let mut e = ExternError::success();
            let res = map.insert_with_output(&mut e, || {
                panic!("intentional panic (insert_with_output)");
            });

            assert_eq!(e.get_code(), crate::ErrorCode::PANIC);
            let _ = unsafe { e.get_and_consume_message() };

            assert_eq!(res, 0);

            assert!(!map.map.is_poisoned());
            let inner = map.map.read().unwrap();
            inner.assert_valid();
            assert_eq!(inner.len(), 0);
        }
    }
}